

Tetrahedron Letters 44 (2003) 4007-4010

Synthesis of 1-tetralones by intramolecular Friedel-Crafts reaction of 4-arylbutyric acids using Lewis acid catalysts

Dong-Mei Cui, Masato Kawamura, Shigeru Shimada,* Teruyuki Hayashi and Masato Tanaka[†]

National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, Tsukuba, Ibaraki 305-8565, Japan Received 16 March 2003; revised 2 April 2003; accepted 4 April 2003

Abstract—Intramolecular Friedel–Crafts reaction of 4-arylbutyric acids efficiently proceeded in the presence of catalytic amounts of Lewis acids such as Bi(NTf₂)₃ and M(OTf)₃ (M=Bi, Ga, In and rare-earth metals) to form 1-tetralones. Chroman-4-one and thiochroman-4-one were also obtained in good yields from 3-phenoxypropionic acid and 3-phenylthiopropionic acid, respectively. © 2003 Elsevier Science Ltd. All rights reserved.

1-Tetralones are important intermediates for the preparation of pharmaceuticals¹ and also found in natural products.² One of the most important methods to prepare 1-tetralones is intramolecular Friedel–Crafts reaction of 4-arylbutyric acids or 4-arylbutyryl chlorides.

The direct dehydrative cyclization of 4-arylbutyric acids is preferable to the cyclization via acid chlorides³ because the former reaction formally produces only water as a by-product, which meets recent requirement for environmentally benign chemical processes. How-

Table 1. Cyclization of 4-phenylbutyric acid in the presence of Lewis acid catalysts^a

Entry	Cat. (mol%)	Solvent	Temp. (°C)	Time (h)	Yield (%)b
1	Bi(OTf) ₃ (10)	Toluene	90	20	8
2	$Bi(NTf_2)_3$ (10)	Toluene	90	20	Trace
3	Bi(OTf) ₃ (10)	Toluene	Reflux	20	51
4	$Bi(NTf_2)_3$ (10)	Toluene	Reflux	20	59
5	$Bi(OTf)_3$ (1)	Toluene	180	7	74
5	$Bi(NTf_2)_3$ (1)	Toluene	180	7	97
7	$Bi(NTf_2)_3$ (1)	p-Xylene	180	7.5	Quant.
3	$Bi(NTf_2)_3$ (0.1)	p-Xylene	180	42	86
)	$Bi(NTf_2)_3$ (1)	Decane	180	7	Trace
10	$Bi(NTf_2)_3$ (1)	Decalin	180	7	Trace
.1	AlCl ₃ (3)	p-Xylene	180	6	0
12	Ga(OTf) ₃ (1)	p-Xylene	180	7	57
13	$In(OTf)_3$ (1)	p-Xylene	180	7	80
14	$Sc(OTf)_3$ (1)	p-Xylene	180	10	71
15	La(OTf) ₃ (10)	p-Xylene	180	6	67
16	$Nd(OTf)_3$ (1)	p-Xylene	180	7	90
17	$Sm(OTf)_3$ (1)	p-Xylene	180	7	96
18	Eu(OTf) ₃ (10)	p-Xylene	180	6	50
19	$Yb(OTf)_3$ (1)	p-Xylene	180	7	39

^a The reaction was performed using 0.25 mmol of 4-phenylbutyric acid in 2 mL of solvent. Entries 5-19 were conducted in a sealed glass tube.

Keywords: tetralone; Lewis acid; Friedel-Crafts reaction; bismuth; cyclization.

^b GC yield using dodecane as an internal standard.

^{*} Corresponding author. Tel.: +81-29-861-4588; fax: +81-29-861-4511; e-mail: s-shimada@aist.go.jp

[†] Present address: Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.

ever, the direct cyclization has been performed by using an excess of protic acids (often as solvents) such as sulfuric acid,⁴ polyphosphoric acid (PPA),⁵ polyphosphate ester (PPE),⁶ methanesulfonic acid,⁷ and hydrogen fluoride,⁸ and therefore forms large amount of acid wastes after the reaction. To the best of our knowledge, only two catalytic examples, reactions using Nafion-H⁹ and zeolites,¹⁰ are known. Here we report that Lewis acids such as Bi(NTf₂)₃ and M(OTf)₃ (M=Bi, Ga, In and rare-earth metals) efficiently catalyze the cyclization of 4-arylbutyric acids.

First we studied the cyclization of 4-phenylbutyric acid (1) using Bi(OTf)₃ because it was known to catalyze Friedel–Crafts reaction of acid chlorides and acid anhydrides efficiently. The reaction was found to be highly dependent on the reaction temperature and 1-tetralone (2a) was obtained in a good yield at 180°C by using only 1 mol% of catalyst (Table 1, entries 1, 3, 5). Bi(NTf₂)₃¹² was more efficient than Bi(OTf)₃ and gave 2a quantitatively at 180°C in *p*-xylene (Table 1, entry 7). Even 0.1 mol% of Bi(NTf₂)₃ afforded 2a in a good yield although a longer reaction time was required (Table 1, entry 8). The cyclization did not proceed in aliphatic hydrocarbon solvents such as decane and decalin (Table 1, entries 9–10).

As expected, a catalytic amount of $AlCl_3$ did not promote the reaction at all in p-xylene at $180^{\circ}C$ (Table 1, entry 11). On the other hand, various metal triflates those are known to catalyze Friedel–Crafts acylation reactions of acid chlorides and anhydrides^{11c,13} also catalyzed the cyclization of 1 (Table 1, entries 12–19); in particular, $Sm(OTf)_3$ (1 mol%) afforded 2a almost quantitatively.

Table 2 summarizes the scope and limitation of the dehydrative cyclization using Bi(NTf₂)₃. ^{14,15} 4-Arylbutyric acids with electron-donating substituents on the aromatic ring were easily cyclized in p-xylene at 180°C (Table 2, entries 1-4). In the case of 4-(4iodophenyl)butyric acid, a small amount of by-product derived from the intermolecular reaction of the carboxylic acid with p-xylene used as solvent. Therefore, in the case of less-reactive substrates, chlorobenzene was used as solvent to minimize the reaction involving the solvent. The cyclization of 4-(4-fluorophenyl)- and 4-(4iodophenyl)butyric acids efficiently proceeded at 200°C (Table 2, entries 5–6). It was reported that 4-(3,4difluorophenyl)and 4-(3,4-dichlorophenyl)butyric acids did not efficiently cyclize under the conventional conditions using PPA and 1-tetralones 2h and 2i were obtained in 39 and 36% yields, respectively,56 while the cyclization of them using 5 mol% of Bi(NTf₂)₃ gave 2h and 2i in good yields (Table 2, entries 7-8). Likewise the cyclization of 4-(4-trifluoromethylphenyl)butyric acid using PPA or PPE was reported not to give 1-tetralone 2j at all and the cyclization of 4-(4-trifluoromethylphenyl)butyryl chloride using an excess of AlCl₃ afforded 7-trichloromethyl-1-tetralone, instead of 2j, in 33% yield, 5b while the present method furnished the desired tetralone 2j in 46% yield (Table 2, entry 9).

Table 2. Synthesis of 1-tetralones and related cyclic ketones^a

				2b - 2l		
entry	solvent	temp / °C	time / h	product	yield / % ^b	
1	p-xylene	180	7	2b	86 (99)	
2	<i>p</i> -xylene	180	7	2c	86	
3	p-xylene	180	7	MeO 2d	(93)	
4	p-xylene	180	7	MeO 2e	84 (92)	
5	PhCl	200	15	F 2f	81	
6	PhCl	200	15	2g	(89)	
7°	PhCl	200	10	F 2h	72 (80)	
8°	PhCl	200	20	CI 2i	(81)	
9 ^c	PhCl	200	15	F ₃ C 2j	(46)	
10	p-xylene	180	7	S 2k	89	
11	p-xylene	180	7	21 N	81	

^a The reaction was performed using 0.25 mmol of carboxylic acids in 2 mL of solvent in a sealed glass tube.

Cyclization of heteroarylbutyric acids, 4-(2-thienyl)-butyric acid and 4-(3-indolyl)butyric acid, also proceeded efficiently (Table 2, entries 10–11).

Cyclization of 3-phenoxypropionic acid (**3a**) and 3-(4-chlorophenylthio)butyric acid (**3b**) to form chroman-4-one and thiochroman-4-one, respectively, was also efficiently promoted by Lewis acids (Table 3). Only 1 mol% of Bi(NTf₂)₃ was effective for both **3a** and **3b** (Table 3, entries 1 and 8). Cyclization of **3a** with Ga(OTf)₃ was slightly faster but less clean than that with Bi(NTf₂)₃, and prolonged heating decreased the yield of **4a** (Table 3, entries 2–3). Although Eu(OTf)₃ was less efficient than Bi(NTf₂)₃, an increase in the amount of the catalyst afforded **4a** quantitatively (Table 3, entries 6–7). Sm(OTf)₃, which was very effective for the cyclization of **1**, was not suitable for the

^b Isolated yields. GC yields using dodecane as an internal standard are shown in parentheses.

^c 5 mol% of Bi(NTf₂)₃ was used.

Table 3. Synthesis of chroman-4-one and thiochroman-4-one^a

Entry	3a/3b	Cat. (mol%)	Temp. (°C)	Time (h)	Yield (%)b
1	3a	Bi(NTf ₂) ₃ (1)	180	20	80
2	3a	$Ga(OTf)_3$ (1)	180	4	64
3	3a	$Ga(OTf)_3$ (1)	180	9	58
ļ	3a	$Sc(OTf)_3$ (1)	180	20	60
5	3a	$La(OTf)_3$ (10)	180	27	83
Ď	3a	$Eu(OTf)_3$ (1)	180	20	58
•	3a	$Eu(OTf)_3$ (10)	180	14	98
	3b	$Bi(NTf_2)_3$ (1)	200	7	87
	3b	$In(OTf)_3$ (1)	200	20	46
0	3b	$Sm(OTf)_3$ (1)	200	9	Trace
1	3b	$Sm(OTf)_3$ (10)	200	20	27
2	3b	$Yb(OTf)_3$ (1)	200	20	24
13	3b	$Yb(OTf)_3$ (10)	200	7	98

^a The reaction was performed using 0.25 mmol of carboxylic acids in 2 mL of PhCl in a sealed glass tube.

cyclization of **3b**, while 10 mol% of Yb(OTf)₃ afforded **4b** quantitatively (Table 3, entries 10–13).

In summary, 1-tetralones and related cyclic ketones were efficiently synthesized by the intramolecular Friedel–Crafts acylation reaction of 4-arylbutyricacids and related carboxylic acids using catalytic amounts of Lewis acids such as $Bi(NTf_2)_3$ and $M(OTf)_3$ (M = Bi, Ga, In and rare-earth metals).

Acknowledgements

This work was financially supported by New Energy and Industrial Technology Development Organization (NEDO). D.C. thanks NEDO for a postdoctoral fellowship.

References

- For example, see: (a) Deshpande, M. N.; Cain, M. H.; Patel, S. R.; Singam, P. R.; Brown, D.; Gupta, A.; Barkalow, J.; Callen, G.; Patel, K.; Koops, R.; Chorghade, M.; Foote, H.; Pariza, R. Org. Process Res. Dev. 1998, 2, 351–356; (b) Vukics, K.; Fodor, T.; Fischer, J.; Fellegvári, I.; Lévai, S. Org. Process Res. Dev. 2002, 6, 82–85
- For example, see; (a) Wu, T. S.; Tsai, Y. L.; Damu, A. G.; Kuo, P. C.; Wu, P. L. J. Nat. Prod. 2002, 65, 1522–1525; (b) Quang, D. N.; Hashimoto, T.; Tanaka, M.; Baumgartner, M.; Stadler, M.; Asakawa, Y. J. Nat. Prod. 2002, 65, 1869–1874.
- (a) Martin, E. L.; Fieser, L. F. Org. Synth. Coll. Vol. II 1943, 569–571; (b) Johnson, G. D. Org. Synth. Coll. Vol. IV 1963, 900–903.

- (a) Krollpfeiffer, F.; Schäfer, W. Ber. Dtsch. Chem. Ges.
 1923, 56, 620–632; (b) Caro, Y.; Masaguer, C. F.;
 Ravina, E. Tetrahedron: Asymmetry 2003, 14, 381–387.
- (a) Snyder, H. R.; Werber, F. X. Org. Synth. Coll. Vol. III 1955, 798–800; (b) Owton, W. M.; Brunavs, M. Synth. Commun. 1991, 21, 981–987.
- (a) Rao, A. V. R.; Chanda, B.; Borate, H. B. *Tetrahedron* 1982, 38, 3555–3561; (b) Esteban, G.; Lopez-Sanchez, M. A.; Martinez, E.; Plumet, J. *Tetrahedron* 1998, 54, 197–212
- Premasagar, V.; Palaniswamy, V. A.; Eisenbraun, E. J. J. Org. Chem. 1981, 46, 2974–2976.
- Fieser, L. F.; Hershberg, E. B. J. Am. Chem. Soc. 1939, 61, 1272–1281.
- (a) Yamato, T.; Hideshima, C.; Prakash, G. K. S.; Olah, G. A. J. Org. Chem. 1991, 56, 3955–3957; (b) Olah, G. A.; Mathew, T.; Farnia, M.; Prakash, G. K. S. Synlett 1999, 1067–1068.
- 10. Kooti, M.; Zendehdel, M.; Amini, M. M. J. Inclusion Phenom. Macrocyclic Chem. 2002, 42, 265–268.
- (a) Desmurs, J. R.; Labrouillere, M.; Le Roux, C.; Gaspard, H.; Laporterie, A.; Dubac, J. *Tetrahedron Lett.* 1997, 38, 8871–8874; (b) Repichet, S.; Le Roux, C.; Dubac, J.; Desmurs, J. R. *Eur. J. Org. Chem.* 1998, 2743–2746; (c) Le Roux, C.; Dubac, J. *Synlett* 2002, 181–200.
- Picot, A.; Repicheta, S.; Le Roux, C.; Dubac, J.; Roques, N. J. Fluorine Chem. 2002, 116, 129–134.
- (a) Kawada, A.; Mitamura, S.; Matsuo, J.; Tsuchiya, T.; Kobayashi, S. *Bull. Chem. Soc. Jpn.* **2000**, *73*, 2325–2333;
 (b) Matsuo, J.; Odashima, K.; Kobayashi, S. *Synlett* **2000**, 403–405;
 (c) Kobayashi, S.; Sugiura, M.; Kitagawa, H.; Lam, W. W. L. *Chem. Rev.* **2002**, *102*, 2227–2302;
 (d) Prakash, G. K. S.; Yan, P.; Torok, B.; Bucsi, I.; Tanaka, M.; Olah, G. A. *Catal. Lett.* **2003**, *85*, 1–6.
- 14. Typical procedure: A mixture of Bi(NTf₂)₃ (3 mg) and 1 (41 mg, 0.25 mmol) in toluene (2 mL) was heated at

^b GC yield using dodecane as an internal standard.

180°C for 7 h in a sealed glass tube. After the addition of dodecane (20 μ L, an internal standard for GC analysis), the mixture was analyzed by GC to show the formation of **2a** in 97% yield. Then the mixture was diluted with EtOAc (10 mL) and washed with a saturated NaHCO₃ solution (10 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (10 mL×3). The combined organic layer was washed with brine (15 mL), dried over MgSO₄, filtered and concentrated under vacuum. The residue was separated by column chromatography on silica gel (hexane/EtOAc=10/1) to give **2a** (32 mg, 88% yield).

15. Selected data for new compounds: 7-iodo-1-tetralone (**2g**): yellow solid; mp 59.5–60°C; 1 H NMR (499.1 MHz, CDCl₃): δ 2.11–2.17 (m, 2 H), 2.65 (t, J=6.7 Hz, 2 H),

2.91 (t, J=6.1 Hz, 2 H), 7.02 (d, J=7.9 Hz, 1 H), 7.77 (dd, J=7.9 Hz, 1.8 Hz, 1 H), 8.35 (d, J=1.8 Hz, 1 H); 13 C NMR (125.4 MHz, CDCl₃): δ 23.01, 29.33, 38.84, 91.68, 130.85, 134.25, 136.16, 141.97, 143.82, 196.99. Anal. calcd for C₁₀H₉IO: C, 44.14; H, 3.33. Found: C, 44.37; H, 3.11. 7-Trifluoromethyl-1-tetralone (**2j**): colorless oil; bp 95°C (2 mmHg, oven temperature for bulb-to-bulb distillation); 1 H NMR (499.1 MHz, CDCl₃): δ 2.15–2.21 (m, 2 H), 2.71 (t, J=6.7 Hz, 2 H), 3.04 (t, J=6.1 Hz, 2 H), 7.40 (d, J=7.9 Hz, 1 H), 7.70 (dd, J=7.9 Hz, 1.8 Hz, 1 H), 8.31 (s, 1 H); 13 C NMR (125.4 MHz, CDCl₃): δ 22.85, 29.64, 38.88, 123.81 (q, J=272 Hz), 124.40–124.50 (m), 129.31 (q, J=33 Hz), 129.43–129.52 (m), 129.63, 132.86, 147.96, 196.97. Anal. calcd for C₁₁H₉F₃O: C, 61.68; H, 4.24. Found: C, 61.87; H, 4.00.